Collection - ArrayList 源码解析

概述

ArrayList 实现了 List 接口,是 顺序容器 ,即 元素存放的数据 与 放进去的顺序 相同,允许放入null元素,底层通过 数组实现。除该类未实现同步外,其余跟 Vector 大致相同。每个 ArrayList 都有一个容量(capacity),表示底层数组的实际大小,容器内存储元素的个数不能多于当前容量。当向容器中添加元素时,如果容量不足,容器会自动增大底层数组的大小。前面已经提过,Java泛型只是编译器提供的语法糖,所以这里的数组是一个Object数组,以便能够容纳任何类型的对象。

1649333856488

size(), isEmpty(), get(), set()方法均能在常数时间内完成,add() 方法的时间开销跟插入位置有关,addAll()方法的时间开销跟添加元素的个数成正比。其余方法大都是 线性时间

为追求效率,ArrayList没有实现同步(synchronized),如果需要多个线程并发访问,用户可以手动同步,也可使用Vector替代

ArrayList的实现

底层数据结构

1
2
3
4
5
6
transient Object[] elementData; // non-private to simplify nested class access
/**
* 实际 存储 元素 个数
* @serial
*/
private int size;

构造函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
*创建一个初始容量为 initialCapacity 大小的数组
*/
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}

/**
* 创建一个初始容量为 默认容量 大小的数组 10
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}

/**
* 按照集合的迭代器返回元素的顺序 ,构造包含指定集合元素的列表。
*
*/
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}

自动扩容

每当向数组中添加元素时,都要去检查添加后元素的个数是否会超出当前数组的长度,如果超出,数组将会进行扩容,以满足添加数据的需求。数组扩容通过一个公开的方法ensureCapacity(int minCapacity)来实现。在实际添加大量元素前,我也可以使用 ensureCapacity 来手动增加 ArrayList 实例的容量,以减少递增式再分配的数量。

数组进行扩容时,会将老数组中的元素重新拷贝一份到新的数组中,每次数组容量的增长大约是其原容量的1.5倍。这种操作的代价是很高的,因此在实际使用时,我们应该尽量避免数组容量的扩张。当我们可预知要保存的元素的多少时,要在构造ArrayList实例时,就指定其容量,以避免数组扩容的发生。或者根据实际需求,通过调用ensureCapacity方法来手动增加ArrayList实例的容量。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/**
* 必要时,增加ArrayList实例的容量,以确保它至少可以容纳最小容量参数指定的元素数量。
* @param minCapacity 期望的最小容量
*/
public void ensureCapacity(int minCapacity) {
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
// any size if not default element table
? 0
// larger than default for default empty table. It's already
// supposed to be at default size.
: DEFAULT_CAPACITY;

if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
}

private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}

ensureExplicitCapacity(minCapacity);
}

private void ensureExplicitCapacity(int minCapacity) {
modCount++;

// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}

/**
*要分配的数组的最大大小。有些虚拟机在数组中保留一些头字。
*尝试分配更大的数组可能会导致OutOfMemoryError:
*请求的数组大小超过虚拟机限制
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

/**
* 增加容量,以确保它至少可以容纳最小容量参数指定的元素数量。
*
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);//1.5
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}

private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}

1649335001553

add(), addAll()

跟C++ 的vector不同,ArrayList没有push_back()方法,对应的方法是add(E e)ArrayList也没有insert()方法,对应的方法是add(int index, E e)。这两个方法都是向容器中添加新元素,这可能会导致capacity不足,因此在添加元素之前,都需要进行剩余空间检查,如果需要则自动扩容。扩容操作最终是通过grow()方法完成的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/**
* 将指定的元素追加到此列表的末尾。
*
* @param e element to be appended to this list
* @return <tt>true</tt> (as specified by {@link Collection#add})
*/
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}

/**
* 将指定的元素插入到此列表中的指定位置。
* 将当前位置的元素(如果有的话)和随后的元素向右移动(给它们的下标加1)。
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
rangeCheckForAdd(index);

ensureCapacityInternal(size + 1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}

1649335176985

add(int index, E e)需要先对元素进行移动,然后完成插入操作,也就意味着该方法有着线性的时间复杂度。

addAll()方法能够一次添加多个元素,根据位置不同也有两个版本,一个是在末尾添加的addAll(Collection<? extends E> c)方法,一个是从指定位置开始插入的addAll(int index, Collection<? extends E> c)方法。

add()方法类似,在插入之前也需要进行空间检查,如果需要则自动扩容;如果从指定位置插入,也会存在移动元素的情况。 addAll()的时间复杂度 不仅跟插入元素的多少有关,也跟插入的位置相关。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}

public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);

Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount

int numMoved = size - index;
if (numMoved > 0)
// System.arraycopy(Object src, int srcPos, Object dest, int destPos, int
// length)
//src:源数组;
//srcPos:源数组要复制的起始位置;
//dest:目的数组;
//destPos:目的数组放置的起始位置;
//length:复制的长度.
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);//把index后的数据往后挪 size - index 位
//把待插入的数据 插入到 index 后
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}

set()

既然底层是一个数组ArrayListset()方法也就变得非常简单,直接对数组的指定位置赋值即可。

1
2
3
4
5
6
7
public E set(int index, E element) {
rangeCheck(index);//下标越界检查
E oldValue = elementData(index);
elementData[index] = element;//赋值到指定位置,复制的仅仅是引用
return oldValue;
}

get()

get()方法同样很简单,唯一要注意的是由于底层数组是Object[],得到元素后需要进行类型转换。

1
2
3
4
5
public E get(int index) {
rangeCheck(index);
return (E) elementData[index];//注意类型转换
}

remove()

remove()方法也有两个版本,一个是remove(int index)删除指定位置的元素,另一个是remove(Object o)删除第一个满足o.equals(elementData[index])的元素。删除操作是add()操作的逆过程,需要将删除点之后的元素向前移动一个位置。需要注意的是为了让GC起作用,必须显式的为最后一个位置赋null值。

1
2
3
4
5
6
7
8
9
10
11
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index, numMoved);
elementData[--size] = null; //清除该位置的引用,让GC起作用
return oldValue;
}

关于Java GC这里需要特别说明一下,有了垃圾收集器并不意味着一定不会有内存泄漏。对象能否被GC的依据是是否还有引用指向它,上面代码中如果不手动赋null值,除非对应的位置被其他元素覆盖,否则原来的对象就一直不会被回收。

trimToSize()

ArrayList还给我们提供了将底层数组的容量调整为当前列表保存的实际元素的大小的功能。它可以通过trimToSize方法来实现。代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
/**
* 将 ArrayList 实例的容量调整为列表的当前大小。应用程序可以使用该操作来最小化
* ArrayList实例的存储空间。
*/
public void trimToSize() {
modCount++;
if (size < elementData.length) {
elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);
}
}

indexOf(), lastIndexOf()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/**
* 返回列表中指定元素第一次出现的索引 ,如果没有 返回 -1
*/
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}

获取元素的最后一次出现的index:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/**
* 返回列表中指定元素最后一次出现的索引 ,如果没有 返回 -1
*/
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}

Fail-Fast机制:

ArrayList也采用了快速失败的机制,通过记录 modCount 参数来实现。在面对并发的修改时,迭代器很快就会完全失败,而不是冒着在将来某个不确定时间发生任意不确定行为的风险。