Redis - Redis 最佳实践
Redis 最佳实践
尽管 redis 是一款非常优秀的 NoSQL 数据库,但更重要的是,作为使用者我们应该学会在不同的场景中如何更好的使用它,更大的发挥它的价值。主要可以从这四个方面进行优化:Redis键值设计、批处理优化、服务端优化、集群配置优化
redis 慢日志使用
Redis 提供了慢日志命令的统计功能,它记录了有哪些命令在执行时耗时比较久。
查看 Redis 慢日志之前,你需要设置慢日志的阈值。例如,设置慢日志的阈值为 5 毫秒,并且保留最近 500 条慢日志记录:
1 | # 命令执行耗时超过 5 毫秒,记录慢日志 |
设置完成之后,所有执行的命令如果操作耗时超过了 5 毫秒,都会被 Redis 记录下来。
此时,你可以执行以下命令,就可以查询到最近记录的慢日志:
- slowlog len:查询慢查询日志长度
- slowlog get [n]:读取n条慢查询日志
- slowlog reset:清空慢查询列表
1 | 127.0.0.1:6379> SLOWLOG get 5 |
有可能会导致操作延迟的情况:
- 经常使用 O(N) 以上复杂度的命令,例如 SORT、SUNION、ZUNIONSTORE 聚合类命令,要花费更多的 CPU 资源
- 使用 O(N) 复杂度的命令,但 N 的值非常大,Redis 一次需要返回给客户端的数据过多,更多时间花费在数据协议的组装和网络传输过程中。
你可以使用以下方法优化你的业务:
- 尽量不使用 O(N) 以上复杂度过高的命令,对于数据的聚合操作,放在客户端做
- 执行 O(N) 命令,保证 N 尽量的小(推荐 N <= 300),每次获取尽量少的数据,让 Redis 可以及时处理返回
Redis键值设计
优雅的key结构
Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:
- 遵循基本格式:[业务名称]:[数据名]:[id]
- 长度不超过44字节
- 不包含特殊字符
例如:我们的登录业务,保存用户信息,其key可以设计成如下格式:
这样设计的好处:
- 可读性强
- 避免key冲突
- 方便管理
- 更节省内存: key是string类型,底层编码包含int、embstr和raw三种。embstr在小于44字节使用,采用连续内存空间,内存占用更小。当字节数大于44字节时,会转为raw模式存储,在raw模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储SDS内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片
拒绝BigKey
什么是BigKey
如果一个 key 写入的 value 非常大,那么 Redis 在分配内存时就会比较耗时。同样的,当删除这个 key 时,释放内存也会比较耗时,这种类型的 key 我们一般称之为 bigkey。
BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:
- Key本身的数据量过大:一个 String 类型的 Key ,它的值为 5 MB
- Key中的成员数过多:一个 ZSET 类型的 Key ,它的成员数量为 10,000个
- Key中成员的数据量过大:一个 Hash 类型的 Key ,它的成员数量虽然只有 1,000 个但这些成员的Value(值)总大小为100 MB
那么如何判断元素的大小呢?redis也给我们提供了命令
1 | MEMORY USAGE KEY |
推荐值:
- 单个key的value小于10KB
- 对于集合类型的key,建议元素数量小于1000
BigKey的危害
网络阻塞
对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
数据倾斜
BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
Redis阻塞
对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
CPU压力
对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用
如何发现BigKey
1 | redis-cli --bigkeys -a `密码` |
利用redis-cli提供的–bigkeys参数,可以遍历分析所有key,并返回 Key 的整体统计信息与每个数据类型的 Top1 的 big key
这个命令的原理,就是 Redis 在内部执行了 SCAN 命令,遍历整个实例中所有的 key,然后针对 key 的类型,分别执行 STRLEN、LLEN、HLEN、SCARD、ZCARD 命令,来获取 String 类型的长度、容器类型(List、Hash、Set、ZSet)的元素个数。
这里需要提醒你的是,当执行这个命令时,要注意 2 个问题:
- 对线上实例进行 bigkey 扫描时,Redis 的 OPS 会突增,为了降低扫描过程中对 Redis 的影响,最好控制一下扫描的频率,指定 -i 参数即可,它表示扫描过程中每次扫描后休息的时间间隔,单位是秒
- 扫描结果中,对于容器类型(List、Hash、Set、ZSet)的 key,只能扫描出元素最多的 key。但一个 key 的元素多,不一定表示占用内存也多,你还需要根据业务情况,进一步评估内存占用情况
1 | scan cursor count n |
自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)
scan 命令调用完后每次会返回2个元素,第一个是下一次迭代的光标,第一次光标会设置为0,当最后一次scan 返回的光标等于0时,表示整个scan遍历结束了,第二个返回的是List,一个匹配的key的数组
1 | public class JedisTest { |
第三方工具
- 利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况
- https://github.com/sripathikrishnan/redis-rdb-tools
网络监控
- 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
- 一般阿里云搭建的云服务器就有相关监控页面
BigKey解决方案
这里有两点可以优化:
- 业务应用尽量避免写入 bigkey
- 如果你使用的 Redis 是 4.0 以上版本,用 UNLINK 命令替代 DEL,此命令可以把释放 key 内存的操作,放到后台线程中去执行,从而降低对 Redis 的影响
- 如果你使用的 Redis 是 6.0 以上版本,可以开启 lazy-free 机制(
lazyfree-lazy-user-del = yes
),在执行 DEL 命令时,释放内存也会放到后台线程中执行
bigkey 在很多场景下,都会产生性能问题。例如,bigkey 在分片集群模式下,对于数据的迁移也会有性能影响,以及我后面即将讲到的数据过期、数据淘汰、透明大页,都会受到 bigkey 的影响。因此,即使 reids6.0 以后,仍然不建议使用 BigKey
总结
- Key的最佳实践
- 固定格式:[业务名]:[数据名]:[id]
- 足够简短:不超过44字节
- 不包含特殊字符
- Value的最佳实践:
- 合理的拆分数据,拒绝BigKey
- 选择合适数据结构
- Hash结构的entry数量不要超过1000
- 设置合理的超时时间
批处理优化
Pipeline
客户端与服务端交互
单个命令的执行流程
N条命令的执行流程
redis处理指令是很快的,主要花费的时候在于网络传输。于是乎很容易想到将多条指令批量的传输给redis
MSet
Redis提供了很多Mxxx这样的命令,可以实现批量插入数据,例如:
- mset
- hmset
利用mset批量插入10万条数据
1 |
|
Pipeline
MSET虽然可以批处理,但是却只能操作部分数据类型,因此如果有对复杂数据类型的批处理需要,建议使用Pipeline
1 |
|
集群下的批处理
如MSET或Pipeline这样的批处理需要在一次请求中携带多条命令,而此时如果Redis是一个集群,那批处理命令的多个key必须落在一个插槽中,否则就会导致执行失败。大家可以想一想这样的要求其实很难实现,因为我们在批处理时,可能一次要插入很多条数据,这些数据很有可能不会都落在相同的节点上,这就会导致报错了
这个时候,我们可以找到4种解决方案
第一种方案:串行执行,所以这种方式没有什么意义,当然,执行起来就很简单了,缺点就是耗时过久。
第二种方案:串行slot,简单来说,就是执行前,客户端先计算一下对应的 key 的 slot ,一样 slot 的 key 就放到一个组里边,不同的,就放到不同的组里边,然后对每个组执行 pipeline 的批处理,他就能串行执行各个组的命令,这种做法比第一种方法耗时要少,但是缺点呢,相对来说复杂一点,所以这种方案还需要优化一下
第三种方案:并行 slot,相较于第二种方案,在分组完成后串行执行,第三种方案,就变成了并行执行各个命令,所以他的耗时就非常短,但是实现呢,也更加复杂。
第四种:hash_tag,redis 计算 key 的 slot 的时候,其实是根据 key 的有效部分来计算的,通过这种方式就能一次处理所有的 key,这种方式耗时最短,实现也简单,但是如果通过操作key的有效部分,那么就会导致所有的key都落在一个节点上,产生数据倾斜的问题,所以我们推荐使用第三种方式。
串行化执行代码实践
1 | public class JedisClusterTest { |
Spring集群环境下批处理代码
1 |
|
服务器端优化
持久化配置
Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:
- 用来做缓存的Redis实例尽量不要开启持久化功能
- 建议关闭RDB持久化功能,使用AOF持久化
- 利用脚本定期在slave节点做RDB,实现数据备份
- 设置合理的rewrite阈值,避免频繁的bgrewrite
- 配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞。简单说就是,禁止在重写期间 fsync 刷盘
- 部署有关建议:
- Redis 实例的物理机要预留足够内存,应对fork和rewrite
- 单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力(可以单机部署多台redis 实例)
- 不要与CPU密集型应用部署在一起
- 不要与高硬盘负载应用一起部署。例如:数据库、消息队列
命令及安全配置
安全可以说是服务器端一个非常重要的话题,如果安全出现了问题,那么一旦这个漏洞被一些坏人知道了之后,并且进行攻击,那么这就会给咱们的系统带来很多的损失,所以我们这节课就来解决这个问题。
Redis会绑定在0.0.0.0:6379,这样将会将Redis服务暴露到公网上,而Redis如果没有做身份认证,会出现严重的安全漏洞.
漏洞重现方式:https://cloud.tencent.com/developer/article/1039000
为什么会出现不需要密码也能够登录呢,主要是Redis考虑到每次登录都比较麻烦,所以Redis就有一种ssh免秘钥登录的方式,生成一对公钥和私钥,私钥放在本地,公钥放在redis端,当我们登录时服务器,再登录时候,他会去解析公钥和私钥,如果没有问题,则不需要利用redis的登录也能访问,这种做法本身也很常见,但是这里有一个前提,前提就是公钥必须保存在服务器上,才行,但是Redis的漏洞在于在不登录的情况下,也能把秘钥送到Linux服务器,从而产生漏洞
漏洞出现的核心的原因有以下几点:
- Redis未设置密码
- 利用了Redis的config set命令动态修改Redis配置
- 使用了Root账号权限启动Redis
所以:如何解决呢?我们可以采用如下几种方案
为了避免这样的漏洞,这里给出一些建议:
- Redis一定要设置密码
- 禁止线上使用下面命令:keys、flushall、flushdb、config set等命令。可以利用rename-command禁用。
- bind:限制网卡,禁止外网网卡访问
- 开启防火墙
- 不要使用Root账户启动Redis
- 尽量不使用默认的端口
Redis内存划分和内存配置
当Redis内存不足时,可能导致Key频繁被删除、响应时间变长、QPS不稳定等问题。当内存使用率达到90%以上时就需要我们警惕,并快速定位到内存占用的原因。
有关碎片问题分析
Redis底层分配并不是这个key有多大,他就会分配多大,而是有他自己的分配策略,比如8,16,20等等,假定当前key只需要10个字节,此时分配8肯定不够,那么他就会分配16个字节,多出来的6个字节就不能被使用,这就是我们常说的 碎片问题
进程内存问题分析:
这片内存,通常我们都可以忽略不计
缓冲区内存问题分析:
一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,所以这片内存也是我们需要重点分析的内存问题。
内存占用 | 说明 |
---|---|
数据内存 | 是Redis最主要的部分,存储Redis的键值信息。主要问题是BigKey问题、内存碎片问题 |
进程内存 | Redis主进程本身运⾏肯定需要占⽤内存,如代码、常量池等等;这部分内存⼤约⼏兆,在⼤多数⽣产环境中与Redis数据占⽤的内存相⽐可以忽略。 |
缓冲区内存 | 一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,不当使用BigKey,可能导致内存溢出。 |
于是我们就需要通过一些命令,可以查看到Redis目前的内存分配状态:
- info memory:查看内存分配的情况
- memory xxx:查看key的主要占用情况
接下来我们看到了这些配置,最关键的缓存区内存如何定位和解决呢?
内存缓冲区常见的有三种:
- 复制缓冲区:主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过replbacklog-size来设置,默认1mb
- AOF缓冲区:AOF刷盘之前的缓存区域,AOF执行rewrite的缓冲区。无法设置容量上限
- 客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大1G且不能设置。输出缓冲区可以设置
以上复制缓冲区和AOF缓冲区 不会有问题,最关键就是客户端缓冲区的问题
客户端缓冲区:指的就是我们发送命令时,客户端用来缓存命令的一个缓冲区,也就是我们向 redis 输入数据的输入端缓冲区和redis向客户端返回数据的响应缓存区,输入缓冲区最大1G且不能设置,所以这一块我们根本不用担心,如果超过了这个空间,redis会直接断开,因为本来此时此刻就代表着redis处理不过来了,我们需要担心的就是输出端缓冲区
我们在使用redis过程中,处理大量的big value,那么会导致我们的输出结果过多,如果输出缓存区过大,会导致redis直接断开,而默认配置的情况下, 其实他是没有大小的,这就比较坑了,内存可能一下子被占满,会直接导致咱们的redis断开,所以解决方案有两个
1、设置一个大小
2、增加我们带宽的大小,避免我们出现大量数据从而直接超过了redis的承受能力
集群配置优化
集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:
- 集群完整性问题
- 集群带宽问题
- 数据倾斜问题
- 客户端性能问题
- 命令的集群兼容性问题
- lua和事务问题
问题1、在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:
大家可以设想一下,如果有几个slot不能使用,那么此时整个集群都不能用了,我们在开发中,其实最重要的是可用性,所以需要把如下配置修改成no,即有slot不能使用时,我们的redis集群还是可以对外提供服务
问题2、集群带宽问题
集群节点之间会不断的互相Ping来确定集群中其它节点的状态。每次Ping携带的信息至少包括:
- 插槽信息
- 集群状态信息
集群中节点越多,集群状态信息数据量也越大,10个节点的相关信息可能达到1kb,此时每次集群互通需要的带宽会非常高,这样会导致集群中大量的带宽都会被ping信息所占用,这是一个非常可怕的问题,所以我们需要去解决这样的问题
解决途径:
- 避免大集群,集群节点数不要太多,最好少于1000,如果业务庞大,则建立多个集群。
- 避免在单个物理机中运行太多Redis实例
- 配置合适的cluster-node-timeout值
问题3、命令的集群兼容性问题
有关这个问题咱们已经探讨过了,当我们使用批处理的命令时,redis要求我们的key必须落在相同的slot上,然后大量的key同时操作时,是无法完成的,所以客户端必须要对这样的数据进行处理,这些方案我们之前已经探讨过了,所以不再这个地方赘述了。
问题4、lua和事务的问题
lua和事务都是要保证原子性问题,如果你的key不在一个节点,那么是无法保证lua的执行和事务的特性的,所以在集群模式是没有办法执行lua和事务的
那我们到底是集群还是主从
单体Redis(主从Redis)已经能达到万级别的QPS,并且也具备很强的高可用特性。如果主从能满足业务需求的情况下,所以如果不是在万不得已的情况下,尽量不搭建Redis集群